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Nonlinear interactions between a free-surface
flow with surface tension and a

submerged cylinder
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A submerged cylinder in a uniform stream flow is approximated by a horizontal
doublet, following Lamb’s classical method. A linear steady solution including surface
tension effects is derived, showing that under certain conditions small-scale ripples are
formed ahead of the cylinder, while a train of ‘gravity-like’ waves appear downstream.
Surface tension effects and a dipole are included in the fully nonlinear unsteady non-
periodic boundary-integral solver described by Tanaka et al. (J. Fluid Mech., vol. 185,
1987, pp. 235–248). Nonlinear effects are modelled by considering a flat free surface or
the linear stationary solution as an initial condition for the fully nonlinear irrotational
flow programme. Long-run computations show that these unsteady flows approach
a steady solution for some parameters after waves have radiated away. In other
cases the flow does not approach a steady solution. Interesting features at the free
surface such as the appearance of ‘parasitic capillaries’ near the crest of gravity
waves and the formation of capillary–gravity waves upstream of the cylinder are
found.

1. Introduction
The study of gravity waves formed at a free surface by the flow of a uniform

stream interacting with a submerged cylinder has attracted the interest of researchers
since the early 20th century. Kelvin was perhaps the first to suggest that problem in
1905, followed by Lamb who analysed it formally in the light of linear water wave
theory in 1913 (for a more accessible version of this paper see Lamb 1932, § 247).
Lamb’s method consisted of replacing the cylinder by the equivalent doublet at
its centre and then finding the fluid motion due to this doublet. Supposing a steady
irrotational potential flow with a linearized free-surface boundary condition, he found
the appearance of a local disturbance immediately above the obstacle followed by a
train of stationary sinusoidal gravity waves on the downstream side (see figure 1).
This solution is applicable when the cylinder is of small radius compared with
the depth of its axis; then the disturbance to the free stream due to the presence
of the cylinder causes small-amplitude waves that can be approximated by linear
theory.
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Figure 1. Stationary linear waves due to the presence of a cylinder of radius a and depth d
of submergence on a uniform stream flow U , with surface tension effects neglected; a/d = 1/4,
U = −1.

Havelock (1926) carried out further approximations for the free-surface gravity flow
in the vicinity of an approximately circular cylinder in a uniform stream by the method
of successive images, with a first-order free-surface condition. He reported that the
accuracy of the first-order approximation for the surface elevation increases rapidly
as the depth of submergence increases or as we take relatively smaller velocities. In a
following paper, Havelock (1936) used a set of multipoles – the first of which is just
the dipole in Lamb’s method – from which an exact circular cylinder condition was
applied.

Investigations on the importance of nonlinear effects from the free-surface boundary
condition were carried out by Tuck (1965), who emphasized that a simple linearization
would be inadequate for cases in which the cylinder is close to the free surface, whereas
it does not satisfy the assumption a/d � 1 (with a and d representing the radius and
the depth of submergence of the centre of the cylinder). He suggested that the exact
nonlinear solution would involve highly non-sinusoidal or even breaking waves. Tuck
(1965) also claimed that there is no need for all the extra terms in the series proposed
by Havelock (1936) – Lamb’s submerged dipole is a good approximation – since
nonlinearities have a more important effect than satisfying the cylinder boundary
condition exactly.

Following the work of Tuck (1965), Dagan (1971) investigated the free-surface
gravity flow past a submerged cylinder at high Froude number by the method of
matched asymptotic expansions. A good agreement with linear theory was found for
deep-submerged bodies; for a body close to the free surface the nonlinear calculations
differed significantly from the linearized solution. Other authors who have more
recently studied free-surface gravity flows generated by submerged cylinders include
Scullen & Tuck (1995) and Tyvand & Miloh (1995a,b).

All the works described above were carried out neglecting the effects of surface
tension on the free-surface flow. For large-scale surface disturbances (of length greater
than 10 cm) this approximation is adequate; gravity is dominant, and in the absence
of wind the pressure exerted on the surface by the atmosphere can be considered
constant. At a small scale, however, the surface pressure can be modified by surface
tension. Capillary phenomena may arise when the surface possesses considerable
curvature or when surface tension gradients appear on that surface. In both cases,
the presence of these forces changes the nature of the free-surface flow or induces
motion that is originally absent.

Several authors described the existence of small-scale ripples or capillary waves
upstream of a local disturbance as well as larger gravity waves downstream of it
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(Forbes 1983; Milewski & Vanden-Broeck 1999; Grandison & Vanden-Broeck 2006).
Such situation may occur for a general disturbance, which may take the form of a step
in the bed or of a cylindrical obstacle situated on the bed, in the midst of the water
or on the surface of a stream flow. The incoming stream has a speed exactly equal
to the phase velocity of the generated waves. Since the group velocity of the capillary
waves is greater than their phase velocity, they appear ahead of the generating
object.

The theoretical approach most applied to the understanding of these waves rests
on the linear theory of a point pressure disturbance of a steady stream, presented by
Lamb (1932, § § 270 and 271; see also Whitham 1999, p. 452). Lamb (1932) showed
that there are several possible solutions to the problem, depending upon whether the
stream velocity is greater, less than or equal to the waves’ minimum phase velocity.
The results show that wave amplitudes are known functions of the motion of the
obstacle. The calculated asymptotic wavetrains confirm the results obtained from
group velocity concepts: gravity waves are formed downstream, while capillary waves
appear upstream of the obstacle.

The dynamical theory of the generation of capillary waves and their interaction
with gravity waves has been developed by Longuet-Higgins (1963), Crapper (1970)
and Ruvinsky & Freidman (1981). Since then, numerical simulations have become
a powerful tool in the understanding of such flows, and several publications on this
subject can be found (Ruvinsky, Feldstein & Freidman 1991; Jervis 1996; Ceniceros
& Hou 1999). These works deal with length scales where gravity is the dominant
restoring force but with surface tension remaining locally important in regions of high
curvature. The study of the solution space for two-dimensional symmetric capillary–
gravity waves has also attracted many researchers during the past years. Solutions
corresponding to families of travelling periodic waves and solitary waves have been
found. These correspond to length scales where both surface tension and gravity are
important. This problem is of interest not only because the waves are steep but also
because the solutions become singular when close to the minimum phase velocity.
The varied physical aspects of gravity–capillary waves can be found in the review
papers of Dias & Kharif (1999) and Perlin & Schultz (2000).

Wilton’s ripples represent a classical solution that contains apparent singularities.
Wilton (1915) presented a fifth-order Stokes expansion of the surface profile when
studying periodic capillary–gravity waves of finite amplitude in the vicinity of the
minimum of the dispersion relation. He noticed that the perturbation expansion has
zero radius of convergence at certain wavelengths and reformulated the expansion,
finding that two possible waves can exist at the shortest of these wavelengths, with the
wavelength given by the capillary branch being an integral divisor of the wavelength
given by the gravity branch. Since the primary wave interacts resonantly with one of
its higher harmonics, the perturbation method fails. It was thought that no solutions
existed at these wavelengths, in real applications the effect being reduced by viscosity.
Further contributions to the theme have been published more recently by Vanden-
Broeck (2002).

Much work has since concentrated on the failure of the perturbation expansion at
these wavelengths (see Hogan 1979). Further unexpected results for capillary–gravity
waves, such as a rapid decrease with increasing wave height of the gravitational
potential energy, were then found by Hogan (1981). This decrease was connected
with an extreme distortion of the free-surface profile. Different approaches to the
problem of calculating finite-amplitude capillary–gravity waves of permanent form
on the surface of an inviscid incompressible irrotational fluid have also been proposed.
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Authors who have written on the subject include Hogan (1979, 1980, 1981), Schwartz
& Vanden-Broeck (1979), Rottman & Olfe (1979) and Chen & Saffman (1980). They
have shown that there is a multiplicity of solutions for any set of parameter values. In
particular, Maleewong, Grimshaw & Asavanant (2005) showed that many different
families of capillary–gravity waves exist for Bond numbers between 0 and 1/3 (for its
definition, see (2.11) below).

Hogan (1983) found abrupt changes in the sign of the energy flux for a small increase
of wave amplitude when estimating the energy flux of capillary–gravity waves in a
moving stream for various wavelengths as a function of the wave amplitude. He
concluded that ‘gravity-like’ waves may jump from downstream to upstream when
the velocity of the stream approaches the minimum phase speed in the gravity branch.
Oppositely, ‘capillary-like’ waves would change from upstream to downstream when
the velocity of the stream approaches the minimum phase speed in the capillary
branch. A possible experiment was suggested in order to observe these jumps.

Linear results are restricted to a region in which the amplitude of the disturbances
are significantly small, thus satisfying the inequality a/d � 1. As the ratio a/d

increases, the roughness of the free surface is augmented and waves become ‘steeper’,
with nonlinear effects taking over. The implications of the nonlinear results for
experimental observations are not completely clear. The current paper reports an
investigation of the effects of nonlinearity and surface tension at the free surface
when a steady stream flow interacts with a submerged cylinder. A version of the
fully nonlinear non-periodic boundary-integral method described by Tanaka et al.
(1987) and modified for the inclusion of surface tension by Jervis (1996) is adapted
to this situation. The current work has focused on a general investigation of the
capillary–gravity waves that may be produced upstream and downstream of the
cylinder, especially in the region in which the linear solutions become singular.

2. Governing equations
2.1. Unsteady nonlinear model

To model fully nonlinear effects at a free surface in a spatially non-periodic domain,
the boundary-integral scheme described by Tanaka et al. (1987) is used as its starting
point. An extension of the method which includes the modelling of unsteady free-
surface flows with surface tension implemented by Jervis (1996) is used to investigate
the effects of surface tension. Following Lamb’s classical method, the numerical
scheme is adapted to include a horizontal doublet in a uniform stream flow defined by
U = (U, 0). The fluid flow is assumed to be inviscid and incompressible with the single
doublet located below the free surface at a depth d of submergence. It is also assumed
that the flow is irrotational outside the singular core and away from the free surface.
The irrotational velocity field u(x, y, t) is then given by the gradient of a velocity
potential Φ(x, y, t) which satisfies Laplace’s equation in the fluid domain, excluding
the singular point. All the interior properties of the fluid are then determined by its
properties at the boundaries alone. The entire motion can be modelled by considering
a point discretization of the surface. The solution method is based on solving an
integral equation that arises from Cauchy’s integral theorem for functions of a complex
variable.

In order to apply Cauchy’s integral theorem to the problem, the potential Φ must
be known on all the boundaries. The kinematic and dynamic boundary conditions
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are applied at the free surface such that

Dr
Dt

= ∇Φ,
DΦ

Dt
=

1

2
|∇Φ|2 − gy − p

ρ
, (2.1)

where r = (x, y, t); y is the elevation of the free surface above the undisturbed water
level; g is the acceleration due to gravity; and ρ is the fluid density. In the presence
of surface tension, the pressure p exerted at the free surface is given by

p = p0 − τ
∂2η

∂x2

[
1 +

(
∂η

∂x

)2
]−3/2

, (2.2)

where τ is the surface tension coefficient; p0 is the pressure on the exterior side of the
surface and can be chosen to approximate the effects of wind or a localized pressure
on the surface, though it is not used in the calculations. The last term in (2.2) refers
to the contribution of surface tension effects to the pressure p which depends on the
curvature of the free surface, defined by y = η(x, t).

The fluid domain must be of finite extent in x for the purpose of computing a
numerical solution. We approximate the desired ‘infinite’ domain by assuming a finite
extension in x that goes from, namely, −X∞ to X∞, which satisfies the criterion

|∇Φ(±X∞, y, t) − U | < ε, (2.3)

valid for −∞ < y � 0 and t > 0; ε is a specified small ‘precision’ parameter, while
∇Φ(±X∞, y, t) is evaluated as explained in Dold (1992). For any time t , ±X∞ are
then determined iteratively by the numerical scheme; 10 equally spaced points are
added to the far ends of the free surface until criterion (2.3) is fully satisfied. Thus
the distance between −X∞ and X∞ is expected to increase with time because of the
propagation of disturbances to the far field. It is also assumed that the water is
deep, satisfying the condition ∇Φ → (U, 0) as y → −∞. To complete the model,
an initial condition for the free surface is required such that η(x, t) = η0(x, 0) and
Φ(x, η, t) = Φ0(x, η0, 0). The numerical computations consider a flat free surface or
the linear steady free-surface profile derived in the following section as the initial
condition for the fully nonlinear unsteady problem.

The introduction of a horizontal doublet in our model is done by decomposing
our velocity potential Φ into a regular part φw (due to surface waves) and a singular
part φs (due to the singularity) such that Φ = φw + φs (for more details, see Moreira
2001). The velocity potential φs is then given by the real part of the complex potential
for an irrotational flow due to an approximately circular cylinder held in a stream
with uniform velocity U far from the cylinder (see Batchelor 1967, p. 424). To apply
Cauchy’s integral theorem to the non-periodic free-surface flow problem in deep
water, the complex potential ω includes for convenience the reflection of the cylinder
in the free surface,

ω(z) = U

(
z − z0 +

a2

z − z0

+
a2

z − z0

)
, (2.4)

where z = x + iy and z0(= x0 + iy0) is the position of the centre of the cylinder, z0 its
complex conjugate and a the radius of the cylinder.

Basically the method of solution consists of the following stages. Initially the
velocity potential Φ is known on the surface for each time step. The potential φs due
to the dipole is subtracted from the surface value of Φ such that the remaining surface
wave potential φw , which has no singularity in the fluid domain, can be used with
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Cauchy’s integral theorem to calculate the velocity ∇φw on the free surface. Then the
potential φs is added back in, and the corresponding ‘total’ velocities are evaluated.
The free surface is stepped in time, using a truncated Taylor series. Such stages are
repeated until either the final time is reached, or the algorithm breaks down. The
calculation of higher-order time derivatives of φw necessitates the computation of
higher time derivatives of the surface pressure p defined by (2.2). This is how surface
tension effects come into the numerical scheme. For a constant surface pressure
(p = p0), all time derivatives with respect to p become zero.

Regarding stability, the numerical code is occasionally susceptible to sawtooth
modes. Such instabilities feature in most existing numerical schemes that follow the
motion of surface gravity waves and were first reported by Longuet-Higgins & Cokelet
(1976), who employed smoothing techniques to control them. Dommermuth (2000)
has also shown that spurious high-frequency standing waves are generated when
numerical simulations of nonlinear progressive waves are initialized using linear
waves in high-order spectral methods. If present, these unstable modes are mostly
eliminated by restricting the maximum size of time step and/or by taking higher
orders of backward differencing. Otherwise one of the several smoothing polynomial
formulae given by Dold (1992) effectively removes the unstable modes that may
eventually appear. In all the computations involving pure gravity waves presented in
the current paper, smoothing was not necessary.

With the introduction of surface tension, sawtooth numerical instabilities appear
more frequently in the surface variables. The source of these unstable modes resides
in the calculation of the capillary wave pressure and its Lagrangian derivatives,
which would eventually cause the breakdown of computations. A sufficient number
of surface calculation points is then necessary in order to have any capillary wave well
resolved and thus not being smoothed away by the numerical scheme. If necessary a
low-order smoothing formula is employed. This proves to be efficient in the removal
of unstable modes and also gives a slightly larger maximum steepness of surface
waves rather than when employing a higher-order formula.

2.2. Linear theory

From the theory of linear water waves and supposing that the surface waves propagate
in deep water, surface tension effects are included in the dispersion relation such that
the phase speed c satisfies

c(k) =

(
g

k
+

τ

ρ
k

)1/2

, (2.5)

where k is the wavenumber. (For the purpose of calculations, we suppose g = 980.6 cm
s−2, τ = 74.0 g s−2 and ρ = 1.0 g cm−3.) The group velocity cg of the surface waves
are related to k by

cg(k) =
c

2

(
ρg + 3τk2

ρg + τk2

)
. (2.6)

The linear dispersion relation represented by (2.5) has a minimum value at

k = km =
(ρg

τ

)1/2

, c = cm =

(
4gτ

ρ

)1/4

, (2.7)

while the minimum group velocity is attained at k = kgm
= 0.40km and cg = cgm

=
0.77cm. Here we define kgm

and cgm
as the wavenumber and speed at the minimum

group velocity. For convenience expressions (2.5) and (2.6) are non-dimensionalized



Free-surface flow with a submerged cylinder 491

c/cm

cg/cm

κg κτ

k/km

U > cm

U < cm

U = cm

3.0

2.5

2.0

1.5

1.0

0.5

0 2 4 6 8 10

Figure 2. Phase speed and group velocity of capillary–gravity waves in deep water as a
function of wavenumber, in units of cm and km.

in terms of km and cm, reducing to

c

cm

=

[
1

2

(
k

km

+
km

k

)]1/2

,
cg

cm

=
1

2

c

cm

[
(km/k)2 + 3

(k/km)2 + 1

]
. (2.8)

The graphs of c and cg against k in units of cm and km are shown in figure 2.
The waves produced by an obstacle on a uniform stream flow U may be viewed as

the waves produced by the same obstacle moving with speed −U . In this frame of
reference, supposing a two-dimensional problem, the only stationary waves that can
keep up with the obstacle must satisfy the relation

c(k) = U. (2.9)

Therefore, if U > cm, two solutions are possible, one coming from the gravity branch,
namely kg , and the other from the capillary branch kτ , such that kg < kτ . These
solutions can be associated to the group velocity through expression (2.8) such that

cg(kg) < c(kg), cg(kτ ) > c(kτ ). (2.10)

Since c(kg) = c(kτ ) = U , the capillary waves have a group velocity bigger than the
stream velocity and therefore must appear ahead of the obstacle. The gravity waves
must be downstream, since their group velocity is slower than U .

When the stream velocity U is close to the minimum phase velocity cm, the group
velocity cg is very close to U , and the energy can move away from the pressure
source only very slowly. As we approach cm, a significant increase in wave steepness
is associated to the linear solution, and nonlinear effects start to become important.
(Expressions for the linear wave amplitude and steepness are obtained and discussed
in the next section.) The difference between c and cg decreases until it completely
vanishes as the two roots coalesce at cm. At this point expressions for the linear wave
amplitude and steepness become singular, and the linear approximation breaks down.
Based on the dispersion relation (2.5), if U < cm, there are no solutions satisfying (2.9),
and no wave can remain stationary on the stream. In this case there may exist local
disturbances dying out away from the obstacle but no contribution to the asymptotic
wave pattern. The disturbance level is then confined to a region about the pressure
source represented by the obstacle and decays rapidly to zero with distance from it.
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For the critical case, viscosity becomes important, and waves are damped very rapidly
by it (for full details, see Lamb 1932, § 271).

For relatively deep water, two dimensionless parameters are defined for subsequent
analysis – the Bond and the Froude number,

B =
τ

ρg(d − a)2
, Fr =

U√
g(d − a)

. (2.11)

Note that the Bond number is often defined as the inverse of B in the literature. For
sufficiently large Froude numbers, inertial effects become dominant, and wave break-
ing may occur. However, nonlinear effects only arise when the inequality a/d � 1
is not satisfied. In addition an increase in the Bond number can reduce significantly
the steepness of the surface waves formed due to the interaction of the cylinder with
the current. A balance between inertial and surface tension effects may then occur
such that wave breaking is postponed and in some cases annulled. For the study of
pure gravity waves, the dimensionless parameters Fr and a/d are sufficient to define
the regime of the problem, showing whether inertial and/or nonlinear effects play
any role. When surface tension is added, B becomes the most important parameter
for a general configuration. Depending on the value of B , capillary and/or gravity
waves may appear at the free surface. However, the nature of the disturbances on
the free surface also depends on the ratio between the stream velocity U and the
minimum phase velocity cm; B together with U/cm is used in the subsequent analysis
of the linear and nonlinear results.

3. Linear steady free-surface solution
The effects of surface tension on the disturbance produced by the flow of a

uniform stream meeting a submerged cylindrical obstacle is investigated analytically
on the basis of the linear steady solution described by Lamb (1932, § 247). The
coordinate axes, x and y, have their origins located in the undisturbed level of the
free surface. The centre of the cylinder is immediately below the origin at a position
xs = (0, −d). The velocity potential Φ satisfies Laplace’s equation in the fluid domain
excluding the singular point xs . At the far field, Φ ∼ Ux as |x| → ∞, for −∞ < y � 0;
U represents the velocity of the stream and is assumed to be constant.

For a steady regime the kinematic and dynamic boundary conditions (2.1) simplify
to

∂Φ

∂x

∂η

∂x
=

∂Φ

∂y
, (3.1)

1

2

[(
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2
]

+ gη − τ

ρ

∂2η

∂x2

[
1 +

(
∂η

∂x

)2
]−3/2

=
1

2
U 2, (3.2)

both valid on y = η(x). Equation (3.2) now includes the surface tension term neglected
by Lamb.

These boundary conditions can be linearized by assuming that the surface waves
are sufficiently small. From perturbation theory, the velocity potential Φ(x, η) and
the free-surface profile η(x) can be written in terms of the algebraic expansions,

Φ(x, η) = Ux + εΦ1 + ε2Φ2 + . . . , η(x) = εη1 + ε2η2 + . . . , (3.3)

in which ε is a small parameter; the functions ηi (i = 1, 2, . . .) depends on x, while
Φi depends on x and η. Substituting these approximations into (3.1) and (3.2) and
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extracting the ε terms give

U
∂η

∂x
=

∂φ

∂y
, (3.4)

U
∂φ

∂x
+ gη − τ

ρ

∂2η

∂x2
= 0, (3.5)

where, to simplify the notation, Φ1 and η1 were replaced by φ and η; φ denotes the
velocity potential φs due to the dipole and satisfies Laplace’s equation in the fluid
domain, while at the far field φ ∼ 0 as |x| → ∞, for −∞ < y � 0.

The flow about a circular horizontal cylinder is approximated by a dipole in
a uniform stream flow. We assume that the radius a of the cylinder is small
compared with the depth d of its axis. Then the velocity potential φ can be
written as

φ = Ux

(
1 +

a2

r2

)
+ χ, (3.6)

where r(=
√

x2 + (y + d)2) denotes the distance from the axis of the cylinder and χ is
a harmonic function in all the fluid domain. Therefore, for r = a, ∂φ/∂r = 0, provided
χ is negligible in the neighbourhood of the cylinder. Because of the reversibility of the
flow, an antisymmetric velocity potential is required. Then χ is chosen as a Fourier
integral of the form

χ =

∫ ∞

0

α (k) eky sin kx dk, (3.7)

with α(k) to be determined.
For positive values of (y + d), expression (3.6) is equivalent to

φ = Ux + Ua2

∫ ∞

0

e−k(y+d) sin kx dk + χ. (3.8)

Following Lamb’s solution, the steady free-surface profile is chosen arbitrarily to be
symmetric. Therefore it can be written as a cosine Fourier transform,

η(x) =

∫ ∞

0

β(k) cos kx dk, (3.9)

in which β(k) has to be determined.
Substituting the corresponding derivatives of (3.8) and (3.9) into the kinematic

boundary condition (3.4) gives

−Ua2e−kd + α(k) = −Uβ(k). (3.10)

For the dynamic boundary condition (3.5) we take only the first-order terms of the
disturbance,

gβ(k) + U 2a2ke−kd + Ukα(k) = − τ

ρ
k2β(k). (3.11)

This expression is independent of x. The right-hand side becomes negligible when
surface tension effects are small. Combined with (3.10) this gives

α(k) = −k + κ

k − κ
Ua2e−kd, β(k) =

2a2ke−kd

k − κ
, (3.12)
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where

κ =
g

c2

(
1 +

τ

ρ

k2

g

)
. (3.13)

Note that κ is a function of k2, which comes from the surface tension term included
in the dispersion relation. It follows that the free-surface equation (3.9) has now a
quadratic denominator in the integrand and can be rewritten as

η = −2ρU 2a2

τ

∫ ∞

0

− ke−kd cos kx

(k − κg)(k − κτ )
dk, (3.14)

where

κg =
ρU 2

2τ

(
1 −

√
1 − 4τg

ρU 4

)
, κτ =

ρU 2

2τ

(
1 +

√
1 − 4τg

ρU 4

)
. (3.15)

For real roots, κg and κτ represent the poles of integral (3.14), with κτ � κg . These
solutions correspond to waves travelling at the same phase speed, i.e. c(κτ ) = c(κg) =
U , and can be associated to their group velocity through expression (2.8), which
confirms that cg(κτ ) > U and cg(κg) < U . Therefore one can conclude from group
velocity concepts that capillary waves must appear ahead of the cylinder, while gravity
waves must be downstream of it, supposing κτ and κg real.

In the limit, when τ goes to zero, expression (3.14) reduces to

η = 2a2

∫ ∞

0

− ke−kd cos kx

k − g/U 2
dk, (3.16)

in accordance with Lamb’s solution.

3.1. Evaluation of the fourier integral

The Fourier integral in (3.14) is indeterminate, but it can be evaluated in terms of
its principal value (PV ) for real values of κg and κτ , with κg �= κτ . By applying the
residue theorem,

PV

∫ ∞

0

− ke−kd cos kx

(k − κg)(k − κτ )
dk = Re

{
π i

Res
k=κg,κτ

[
keikx−kd

(k − κg)(k − κτ )

]

−
∫ ∞

0

me−imd−mx

(im − κg)(im − κτ )
dm

}
, (3.17)

which is valid for positive values of x. The integral on the right-hand side of (3.17)
comes from completing the contour integration along the imaginary axis with k = im.
Therefore,

η =
2ρU 2a2

τ

{∫ ∞

0

me−mx
[
m(κg + κτ ) sinmd + (κgκτ − m2) cosmd

]
(m2 + κ2

g )(m
2 + κ2

τ )
dm

+ π

(
κge

−κgd sin κgx − κτe
−κτ d sin κτx

κg − κτ

)}
, for x > 0. (3.18)

The last term in (3.18) represents a stationary wavetrain obtained by the superposition
of two wavetrains with lengths 2π/κg and 2π/κτ . Note that these waves maintain their
position in space despite of the motion of the stream.
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Taking the limit of (3.18) when τ goes to zero leads to

η = −2πκa2e−κd sin κx + 2a2

∫ ∞

0

me−mx (m sinmd + κ cosmd)

m2 + κ2
dm, (3.19)

valid for x > 0, which confirms Lamb’s solution where, as here, κ = g/U 2. Note that
the integral in (3.19) is equal to the real part of expression (3.16) with k = im.

Since the value of η in (3.9) is an even function of x, from its symmetry,

η =
2ρU 2a2

τ

{∫ ∞

0

memx
[
m(κg + κτ ) sinmd + (κgκτ − m2) cos md

](
m2 + κ2

g

)(
m2 + κ2

τ

) dm

+ π

(
κτe

−κτ d sin κτx − κge
−κgd sin κgx

κg − κτ

)}
, for x < 0. (3.20)

Finally, analogous to Lamb’s solution, on the disturbances represented by expressions
(3.18) and (3.20) we superpose the stationary wavetrains

η = −2π
ρU 2a2κg

τ
(
κg − κτ

)e−κgd sin κgx, for x > 0, (3.21)

η = −2π
ρU 2a2κτ

τ
(
κg − κτ

)e−κτ d sin κτx, for x < 0, (3.22)

such that we annul the gravity waves occurring on the upstream side of the cylinder
(x > 0) and the capillary waves downstream of it (x < 0), as it is required from the
group velocity for a physical solution.

For κg = κτ , the Fourier integral in (3.14) has a second-order pole integrand and
cannot be evaluated. Lamb (1932) uses artificial damping through viscosity to move
poles off the axis, and in this critical case this shows that damping from viscous
forces is a dominant effect. For complex roots, κg = κτ . Then the integrand in (3.14)
becomes non-singular, simplifying to

η = −2ρU 2a2

τ

∫ ∞

0

ke−kd cos kx

[k − Re(κτ )]
2 + [Im(κτ )]

2
dk, (3.23)

which is an improper integral. With a suitable change of variables, the infinite range
of integration can be mapped into a finite one, such that this integral can be evaluated
numerically (see Press et al. 1986, p. 115).

3.2. Linear results

Linear results are presented in figure 3 for different values of the Bond number B .
For each case the location of the poles κg and κτ with respect to the dispersion
relation is shown in figure 4, with the horizontal dotted lines representing where
c(κg) = c(κτ ) = U . The parameters U , k, km, c, cm and cg are presented in the
dimensionless form. Then the ratio U/cm is equal to the non-dimensional ratio
Fr/(4B)1/4; for a fixed stream velocity the ratio U/cm decreases as B increases.

The group velocity is represented by the dashed lines in figure 4. It is important
to note that when the stream velocity is greater than the minimum phase speed, i.e.
U > cm (cases b–d ), cg(κg) < c(κg) and cg(κτ ) > c(κτ ). Since c(κg) = c(κτ ) = U , one
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Case (a): B = 0

Case (b): B = 0.0754
a = 0.1111 cm

Case (c): B = 0.2094
a = 0.0667 cm

Case (d): B = 0.222
a = 0.0648 cm

Case (e): B = 0.250165
a = 0.0610 cm

Case (f): B = 0.28
a = 0.0577 cm
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Figure 3. Linear steady solutions for different values of (d − a): (a) ∞ (τ = 0); (b) 1.0 cm;
(c) 0.6 cm; (d ) 0.583 cm; (e) 0.549 cm; (f ) 0.519 cm. For all cases a/d = 1/10, U = −1 and
Fr = 0.75. Except in case (e), surface displacement is vertically exaggerated 10 times.
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Figure 4. Location of the poles κg and κτ with respect to the phase and group velocity;

km = B−1/2; cm = (4B)1/4; U , k, km, c, cm and cg are dimensionless quantities.

can confirm from group velocity concepts the results presented in figure 3: capillary
waves are formed upstream of the cylinder, while gravity waves appear downstream.
Note also that the ripples formed upstream of the cylinder become more prominent as
B increases. Wave amplitudes and steepnesses according to linear theory are plotted
against c/cm in figure 5.

For all the cases here presented the ratio a/d is kept constant and equal to 1/10.
As discussed before, for larger values of a/d , waves become ‘steeper’, and nonlinear
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Figure 5. Variation of (a) amplitude and (b) wave steepness as a function of c/cm

according to linear theory.

phenomena may arise at the water surface. For a constant d , as the ratio a/d

increases, the depth of submergence (d − a) decreases and, therefore, B increases,
with surface tension effects becoming more important. Excepting case (e), all the
free-surface profiles are vertically exaggerated 10 times. Note also that x and y are
non-dimensionalized by the characteristic length scale (d − a) in case (a) of figure 3;
no surface tension effects are included in this case. The radius of the cylinder a is
also provided for each case.

For sufficient large values of (d − a), surface tension effects become negligible,
i.e. B → 0; the solution then approaches the form of a sinusoidal wavetrain with
wavelength 2πU 2/g, located downstream of the cylinder as predicted Lamb (see
figure 3, case a). This means that in the limit, κg tends to g/U 2, with no contribution
coming from the capillary branch. This is confirmed from figure 4, which shows
that the solid curve, representing the capillary–gravity waves, approaches the pure
gravity wave solution (dash-dotted line) for increasing values of c. For k < km/10 and
c > 2.25cm, gravity dominates the free-surface motion. In addition it is possible to see
from figure 5 that for c > 2.25cm, wave amplitudes and steepnesses keep decreasing.
This means that disturbances become less prominent for increasing values of (d − a),
as expected.
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In figure 3, cases (b)–(d ) correspond to the surface profiles for real values of κg

and κτ . For B = 0.0754 (case b), κg = 1.1 and κτ = 12.2, and the solution is close
to a pure gravity wavetrain. Surface tension effects are very small in this case with
κg very close to the gravity wave limit (see figure 4). In fact figure 5(b) reveals that
these ‘gravity-like’ waves are ‘steeper’ than the latter. Furthermore figure 5(a) shows
that the capillary wave amplitudes are almost too small to be noticed in figure 3.

As the two poles κg and κτ approach each other, wave amplitudes tend to increase
at both sides of the cylinder (see figure 5a), and so nonlinear effects may become
important. An increase in wave steepness is also observed with small-scale ripples
becoming visible ahead of the cylinder (see figure 3, cases c and d ). For instance, case
(c) has a wave height of approximately 0.04 mm upstream of the cylinder and 1.2 mm
downstream of it. As discussed before, the appearance of capillary and gravity waves
situated respectively upstream and downstream of the cylinder is predicted from
group velocity concepts, with the results being confirmed by natural observations.

Wave steepnesses continue to grow on both sides as we approach cm (see figure 5b),
with the solution becoming singular when the two poles coalesce. With respect to the
group velocity, figure 4 shows that cg(κg) approaches cg(κτ ) as the stream velocity U

becomes closer to the minimum phase velocity cm until U = cm = c(κg) = c(κτ ). Note

that for a constant stream velocity, U/cm → 1 as B → Fr4/4. In figure 3, cases (e)
and (f ) show the surface profiles for U < cm, i.e. when κg and κτ become complex.
Disturbances become symmetric with amplitudes decaying exponentially in both ±x

directions. This is confirmed by expression (3.23) in which η is an even function of
x. In case (e) the stream velocity U is very close to the minimum phase velocity
(U/cm = 0.9998) with waves becoming very steep. No vertical exaggeration was used
in this case. Nonlinear effects may play an important role in this region with the
linear solution becoming inaccurate.

As B increases, with B > Fr4/4, the solution behaves as a local disturbance,
decaying rapidly to zero with distance from the cylinder (see figure 3, case f ).
According to figure 4, no real steady solution with waves at ∞ exists for the phase
speed. However, for the group velocity two solutions are possible when cm > U > cgm

,
though waves cannot be steady in this case. Thus for an initial-value problem waves
can radiate away. For cm > U > cgm

waves do exist, and some are swept downstream
of the cylinder, while waves of all frequencies are radiated away for U < cgm

. In the
following section the nonlinear numerical model is employed with the aim of shedding
further light on the behaviour of the solution in the neighbourhood of cm.

It is important to note that the radius of the cylinder is a parameter of the
problem that does have some influence on the waves. In the cases presented in
figure 3, a is small compared with the wavelength of the minimum group velocity, i.e.
λgm

= 2π/kgm
= 1.329 cm. The effects for larger values of a are of interest and are

presented in the next section.

4. Fully nonlinear results
The numerical results here presented are obtained by applying the fully nonlinear

unsteady boundary-integral scheme described in § 2.1. When running the code the
input data is set up such that (d − a) corresponds to the characteristic length scale
of the problem. The corresponding parameters that define the underlying flow, i.e.
the stream velocity U , the depth of submergence d and the radius of cylinder a,
are also provided. The dipole is supposed to be at a fixed position in time. The
initial conditions employed in the calculations are a flat free surface or the linear
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steady solutions derived in the previous section. Small disturbances associated to the
impulsive motion of the problem may appear in the nonlinear results. In these cases
long-run computations are used with the aim of obtaining quasi-steady profiles. All
the presented numerical simulations were computed on a Sun Ultra 2/200.

4.1. Pure gravity waves

Before analysing the effects of surface tension at the free surface, consider the case in
which gravity dominates the fluid motion. For this situation the dispersion relation
is given by c = ±(g/k)1/2, with no minimum phase velocity. For sufficiently small
values of a/d , nonlinear effects are negligible, and Lamb’s linear solution gives a
good approximation for the free-surface elevation. Figure 6(a) shows with a vertical
exaggeration of 50:1 the stacked free-surface displacement induced by a stream flow
(U = −0.6) interacting with a cylinder (a/d = 1/10). The initial starting profile is that
of an undisturbed flat free surface. The underlying motion is switched on at time t = 0,
generating unsteady waves that propagate in the −x direction. A sinusoidal wavetrain
with wavelength 2πU 2/g is soon formed downstream of the cylinder, as predicted by
linear theory. As the ratio a/d increases, nonlinear effects become important. The
solution then may involve highly non-sinusoidal or breaking waves.

Figure 6(b) shows the nonlinear free-surface displacement for a/d = 1/5 and
U = −0.6. Waves are formed downstream of the cylinder and are noticeably affected
by nonlinearity in this case. For bigger values of a/d , disturbances induced by the
underlying flow are unsteady and strong enough to cause wave breaking (see figure 6c).
For these cases the nonlinear computations do not reach a stationary profile after a
certain time. Breaking occurs isolated downstream of the cylinder, in a region very
close to it. This result confirms the investigations of Tuck (1965) and Dagan (1971)
who suggested that wave breaking does occur when a/d is not sufficiently small. In
these cases linear theory fails and Lamb’s classical solution of a sinusoidal wavetrain
downstream of the cylinder does not apply.

Figure 7 compares the linear stationary free-surface profiles with quasi-steady
nonlinear results for two different values of a/d , neglecting surface tension effects. As
expected a good agreement between linear and nonlinear results is found in figure 7(a,
b). In these cases the cylinder is sufficiently far from the free surface for no nonlinear
interactions to take place. On the other hand discrepancies between the profiles can be
clearly noticed in case (c). In this case the cylinder becomes closer to the free surface
as a increases for a fixed d . In particular, case (c) shows that the nonlinear result
becomes ‘steeper’ than the linear one, with sharper crests and shorter wavelengths.

4.2. Capillary–gravity waves

With the introduction of surface tension the linear dispersion relation has a minimum
phase speed cm which defines a region in which waves do appear, i.e. U > cm. Two
real roots then exist, and for a/d � 1, linear theory determines accurately the wave
properties of the problem. However, if the ratio a/d increases, nonlinear effects may
become important. If that is the case, then the free-surface profile is distorted, and
wave breaking may occur. For a constant d , as a/d assumes larger values, B also
increases, and thus surface tension effects may postpone wave breaking. Nonlinearity
may also affect the free-surface profile for values of U < cm. Figure 8 shows the
location of the nonlinear cases studied in this section with respect to the phase and
group velocity of capillary–gravity waves. The fully nonlinear unsteady boundary-
integral method introduced in § 2 is here employed taking into account the effects
of surface tension. Special attention is directed to the cases in which U < cm, i.e.
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Figure 6. Fully nonlinear results for a uniform stream flow (U = −0.6) interacting with
a submerged cylinder: (a) a/d = 1/10, vertical exaggeration 50:1; (b) a/d = 1/5, vertical
exaggeration 10:1; (c) a/d = 1/3, vertical exaggeration 10:1, tbreaking = 6.0. For all cases B = 0
and Fr = 0.44.
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Figure 7. Comparison between nonlinear (——) and linear steady results (– – –) with no
surface tension (B = 0): (a) a/d = 1/20; (b) a/d = 1/10; (c) a/d = 1/5. For all cases
U = −0.6 and Fr = 0.44.
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Figure 8. Location of the fully nonlinear results with respect to the phase and group velocity
of capillary–gravity waves. The dash-dotted line represents the group velocity of pure gravity
waves; km = B−1/2; cm = (4B)1/4; U , k, km, c, cm and cg are dimensionless quantities.

B > Fr4/4, with the ratio a/d assuming values sufficiently large for nonlinear effects
to take place.

Figure 9(a, b) compares quasi-steady nonlinear results with linear steady solutions
for cases 1 (B = 0.0754) and 2 (B = 0.2218) respectively, where U > cm (see figure 8).
In these cases a flat free surface was used as the initial condition of the boundary
value problem. Note that in both cases a/d = 1/10, and a vertical exaggeration of
10:1 was used. As expected a good agreement was observed between the linear and
nonlinear results, with ‘gravity-like’ waves being formed downstream of the cylinder
and ‘capillary-like’ waves ahead of it, which are visible only in case 2 in which surface
tension effects become more prominent (B = 0.2218). In both cases the nonlinear
wave amplitudes give accurate linear solutions (see figure 5). When the ratio a/d is
increased to 1/3, keeping U/cm and B with the same values, nonlinear effects take
over, and wave breaking occurs in both cases within very short times.

According to linear theory, if the value of U/cm decreases, such that U < cm, no real
steady solution with waves exists for the phase speed, with only a local disturbance
being predicted (see for instance figure 3, cases e and f ). However two roots exist
for the group velocity if cm > U > cgm

, which may be associated to unsteady waves.
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Figure 10. Fully nonlinear results for a uniform stream flow interacting with a submerged
cylinder: (a) U/cm = 0.9052, (d − a) = 5.0 cm, tbreaking = 4.0; (b) U/cm = 0.7681, (d − a) = 3.6

cm, tbreaking = 10.8. In this case a/d = 1/3, U = −0.3, Fr = 0.7 and cm = (4B)1/4; U and cm

are dimensionless quantities. Vertical exaggeration is 25:1.

Indeed the unsteady nonlinear computed cases 3 and 4 show that wave breaking
occurs in this region. In fact case 3 has the calculations stopped at a shorter time
(tbreaking = 4.0), supposing B = 0.00302, a/d = 1/3 and U/cm = 0.9052 (see figure 10a
for details). Figure 10(b) illustrates case 4, for which B = 0.00582, a/d = 1/3 and
U/cm = 0.7681. The time at which breaking occurs has now increased to 10.8. Since
B is very small in both cases, surface tension effects are less prominent. The initial
condition here used corresponds to the linear steady solution obtained in § 3. Because
of the impulsive starting motion some capillary–gravity waves are visible propagating
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in the −x direction. Waves are also formed ahead of the cylinder, but these are
‘trapped’ by the adverse stream flow U , with energy building up there until wave
breaking occurs. Note that for case 4, U is very close to cgm

.
For U < cgm

wave breaking was no longer observed in the unsteady nonlinear
computations for constants a/d (= 1/3) and U (= −0.3). In fact, as B increases,
U/cm decreases, and the capillary–gravity waves generated ahead of the cylinder are
no longer ‘trapped’ by the adverse current and now radiate upstream of the cylinder.
This feature was observed in cases 5–7 for long computational runs (see figure 11),
where B = 0.00838, 0.01885 and 0.0754, respectively. As B increases, surface tension
effects become more important. Indeed capillary–gravity waves are formed as the
underlying motion is switched on at time t = 0, generating unsteady waves that
propagate in the −x and +x directions. The group velocity of the waves formed
downstream of the cylinder is augmented by the following current and radiates away.
On the other hand the group velocity of the capillary–gravity waves formed ahead of
the cylinder is reduced by the adverse stream flow, as can be seen from figure 11(a, b).
As U/cm keeps decreasing (since B increases), the stream velocity has less effect on
the capillary–gravity waves generated until they are totally radiated away in both x

directions, as shows figure 11(c).
Comparisons between the linear and nonlinear wave profiles for cases 6 and 7 are

presented in figure 12(a, b). A vertical exaggeration of 10:1 was employed at the
free-surface elevation in these cases. The linear steady solution behaves as a local
disturbance, decaying rapidly to zero with distance from the cylinder, and thus it is
used as the initial condition of the fully nonlinear problem. A good agreement was
found between the linear and nonlinear results. Note also that the radius a is now not
very different from the wavelength of the minimum group velocity λgm

= 1.329cm. As
a increases, the free surface becomes more disturbed until wave breaking occurs (see
figures 10 and 11).

Short capillary waves with wavelengths of several millimetres can often be seen
near the crests of steep gravity waves with lengths between 5 and 25 cm. This
phenomenon was also observed in the unsteady nonlinear computations. Figure 13
shows the formation of ‘parasitic’ capillary waves near the crest of gravity waves
formed downstream of the cylinder. In this case B = 0.00378, a/d = 1/5 and
U/cm = 1.4023. Because of the high curvature at the crest of the gravity wave,
surface tension effects become locally important in this case, even though B assumes
a small value. The capillary waves formed upstream of the cylinder have a very small
amplitude and cannot be noticed in figure 13. Note that the appearance of capillary
waves downstream of the cylinder is essentially a nonlinear phenomenon which is not
predicted from group velocity concepts. The time at which breaking occurs is equal
to 14.2.

5. Summary
The interaction between a free-surface flow with surface tension and an

approximately circular, horizontal cylinder has been investigated. The present work
was motivated by several authors who had studied the effects of nonlinearity in
the classical linear solution given by Lamb (1913) but without considering capillary
action. A fully nonlinear model which includes surface tension and a dipole in a
stream flow was developed with the aim of understanding the behaviour of the free-
surface flow. A linear steady solution including surface tension effects was derived
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Figure 11. Fully nonlinear results for a uniform stream flow (U = −0.3) interacting with
a submerged cylinder (a/d = 1/3, Fr = 0.7): (a) U/cm = 0.7012, (d − a) = 3 cm.
(b) U/cm = 0.5725, (d − a) = 2 cm. (c) U/cm = 0.4048, (d − a) = 1 cm. cm = (4B)1/4;
U and cm are dimensionless quantities. Vertical exaggeration is 25:1.
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Figure 13. Fully nonlinear results for a uniform stream flow interacting with a submerged
cylinder: U/cm = 1.4023, (d − a) = 3.0 cm. In this case a/d = 1/5, U = −0.6, Fr = 0.44 and
cm = (4B)1/4; U and cm are dimensionless quantities; tbreaking = 14.2. Vertical exaggeration is
10:1.

and employed as the initial condition of the nonlinear model in some of the computed
cases.

For sufficiently small values of a/d , a good agreement between the quasi-steady
nonlinear numerical results and the linear steady solutions is obtained for both pure
gravity and capillary–gravity waves. However, as the ratio a/d increases, nonlinearity
starts to play an important role. For pure gravity waves, the fully nonlinear results
show that waves become ‘steeper’, with sharper crests and shorter wavelengths, with
wave breaking occurring when larger values of a/d are imposed.

With the introduction of surface tension, the numerical simulations have shown
that wave breaking also occurs for sufficiently large values of a/d , but now this also
depends on the Bond number B . As B increases, surface tension effects become more
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prominent; capillarity can then significantly reduce the steepness of the free-surface
disturbances when it precludes the formation of steady waves. For U > cgm

wave
breaking was observed in all the computed cases when the inequality a/d � 1 was not
satisfied. For U < cgm

, an interesting feature was found: capillary–gravity waves are
formed upstream of the cylinder. According to linear theory, only a local disturbance
which decays rapidly to zero with distance from the centre of the cylinder should
happen in this case. However in an initial-value problem waves can radiate away.
As U/cm decreases, with values smaller than the minimum group velocity cgm

, waves
of all frequencies are radiated upstream and downstream. Then the nonlinear result
approaches the linear steady solution of a local disturbance at the free surface.
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